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Abstract--The growth of unstable structures was studied experimentally in layered wax models. The rheolog- 
ical properties of the two wax types were determined independently by a series of cylinder compression tests. 
Both waxes enhibited (1) a non-Newtonian stress vs strain-rate relationship (2) strain softening and (3) tem- 
perature-dependent viscosity. The stress--strain-rate relationships approximated a power-law, with stress ex- 
ponents of 5 for the microcrystalline wax and 1 .g for paraffin wax. 

Blocks of paraffin with a single embedded layer of microcrystalline wax were deformed in two-dimensional 
pure shear with the layer oriented either parallel to the compressive strain axis so that it shortened and folded, 
or perpendicular to that axis so that it would stretch and boundinage would form. The growth rates of tiny initial 
disturbances were measured. The growth rates for folding and boudinage were much higher than could be 
accounted for by theories assuming Newtonian material properties. Theories taking non-Newtonian behaviour 
into account (Smith, R. B. 1975. Bull. geol. Soc. Am. 86, 1601-1609; Fletcher, R. C. 1974. Am. J. Sci. 274, 
1029-1043) better describe the folding growth rates. Boudinage, however, grew almost three times faster than 
would be predicted even by existing non-Newtonian theory. A possible reason for this discrepancy is that the 
waxes do not exhibit steady-state creep as assumed in the theory. We, therefore, extend the theory to include 
strain-softening. The crucial step in this theory is the use of a scalar measure of the deformation as a state variable 
in the constitutive law. In this way the isotropic manifestation of strain-softening can be taken into account. The 
analysis shows that strain-softening can lead to greatly increased boudinage growth rates while having little 
influence on the growth rates of folds, which is in agreement with the experiments. 

INTRODUCTION 

THE PURPOSE of this paper is to investigate, experiment- 
ally, the influence of material properties on the growth 
of unstable structures in layered materials. In particular, 
we will examine the formation of folds and boudinage, 
both common in the geologic record. Theoretical 
studies, numerical simulation and previous experimen- 
tal work have shown that the growth of these structures 
depends on the contrast in material properties between 
layers and on the form of the consecutive equation for 
each layer. 

Theoretical analyses of the earliest stages of single- 
layer folding in Newtonian fluids have been carried out 
by Biot (1961, 1965), Ramberg (1960), Smith (1975) and 
Fletcher (1974). This type of analysis has been extended 
to include non-Newtonian materials, but without mem- 
ory, by Fletcher (1974) and Smith (1977). The formation 
of boudinage, in both Newtonian and non-Newtonian 
materials, has been shown by Smith (1975, 1977) to 
occur by an instability mechanism which is almost iden- 
tical to folding. These theories make a direct prediction 
of how the growth rates of folds and boudinage depend 
on the constitutive relation for each material. Other 
more specialized theoretical models have been construc- 
ted to demonstrate the effect of non-Newtonian 
behaviour on the later stages of fold development: 
Chapple (1968) and DeCaprariis (1974). 

A number of authors have attempted to construct 
numerical models of fold development using the finite 

element technique (Dieterich & Carter 1969, Parrish 
1973, Parrish et  al. 1976, Shimamoto & Hara 1976). In 
principle, this method is especially promising as it can 
include a wide variety of material properties and can 
follow the growth of the fold to finite amplitude. The 
existing solutions of this sort are somewhat less useful 
however, because they have not been closely compared 
with the fold initiation theories (see above) and because 
of fundamental questions concerning the modelling of 
pressure and compressibility. 

The generation of folds and boudins has also been 
studied in the laboratory (Ramberg 1960, Biot et al. 
1961, Agostino 1971, Hudleston 1973, Cobboid 1975). 
Only a few researchers have attempted quantitative 
studies using materials whose stress-strain and 
stress-strain-rate properties were well known. Hudle- 
ston (1973) produced folds in solutions of ethyl cellulose. 
Unfortunately, there remain questions concerning the 
true viscosity ratios and the assumption that his 
materials were in a Newtonian concentration range. The 
experiments of Biot et al. (1961) used Newtonian 
materials whose properties were adequately documen- 
ted, but only folding at very high viscosity contrasts 
(greater than 2000) was investigated. They obtained 
wavelengths in agreement with their theoretically 
predicted 'dominant wavelengths'. Only one laboratory 
study has used carefully characterized non-Newtonian 
materials. Cobbold (1975) grew folds in paraffin waxes 
from several initial layer shapes. These experiments can- 
not be directly compared to the above mentioned theo- 

215 



216 C. NEURATH and R. B. SMITH 

retical models, because the initial layer perturbations 
were not sinusoidal. 

The present experiments were undertaken in an at- 
tempt to check more rigorously the existing theories of 
fold and boudinage initiation and growth. We felt the 
use of non-Newtonian materials was especially likely to 
yield new insights, which would allow improved inter- 
pretation of natural examples of these two structures. 

METHODS 

The experimental work was carried out in two parts. 
First, stress-strain curves were obtained by squeezing 
wax cylinders at a variety of strain rates and tem- 
peratures. From these curves, viscosities and power law 
exponents were calculated. In the second part of the 
study, blocks of wax containing single embedded layers 
were deformed in two-dimensional pure shear to 
produce folds or boudins. The shear apparatus em- 
ployed Plexiglas walls so that photographs could be 
taken during deformation. Rheological parameters 
determined in cylinder tests were used to interpret the 
results of model experiments. A brief description of ex- 
perimental methods follows. Details can be found in the 
appendix. 

Cylinder compression tests 

Properties of two waxes, microcrystalline wax (Ben- 
nett 1963, Barry & Grace 1971), were determined with 
an Instron materials testing machine. Moulded test 
cylinders 4 cm in diameter x 4 cm high, were flattened 
at constant speed. A continuous record of force was 
achieved through a calibrated load cell system accurate 
to _+ 1% of full scale. Several deformation rates ranging 
from 10 -6 to 10 -2 s-I were used. Cylinders were main- 
tained at 30, 35 or 40 + 0.1°C by a water bath. Cylinder 
ends were lubricated. In converting measured forces to 
stresses, the calculation was made assuming a 
homogeneous increase in cross-sectional area. 

Special runs were conducted to check the effects of 
cylinder height-to-diameter ratio, confining pressure, 
interrupted testing and homogeneity of deformation. 
The last involved constraining cylinders to deform cylin- 
drically by enclosing them in special telescoping metal 
sleeves. In total, 39 cylinders were deformed. 

Experimental folding and boudinage 

Square models 7.5 × 7.5 x 2.5 cm were made by sand- 
wiching a layer of microcrystalline wax between two 
blocks of paraffin wax. An initial waviness was imparted 
to the layer by warming and softening the layer and then 
squeezing it between the hard paraffin blocks on which 
periodic wavy surfaces had already been machined. The 
initial amplitude averaged 0.1 times the layer thickness 
(4 degrees limb dip) for fold-type models and 0.05 times 
the layer thickness for boudinage-type. Although an at- 
tempt was made to give all models equal disturbance 

amplitudes, some deviated by as much as 35% as shown 
in the results section, Wavelength for the disturbance 
was chosen close to the theoretical dominant 
wavelength. To monitor homogeneity of overall 
deformation, a square grid was inked onto the surface of 
the blocks. 

A special 'squeeze box' was used within the Instron 
machine to deform the blocks in two-dimensional pure 
shear at constant speeds and under confining pressures 
of about 1 bar. Five features of this apparatus helped 
achieve these conditions (see Fig. 1). 

(1) Top and bottom rams used the motion of the ln- 
stron crossheads to squeeze the wax block. 

(2) Telescoping L-shaped sidewalls maintained the 
wax in a rectangular shape. 

(3) Rubber  top and bottom sheets were glued to the 
sidewalls. Their  stretching motion followed the spread- 
ing motion of the deforming block and helped eliminate 
shear friction between rams and wax. 

(4) Rubber  air bags connected to a regulated supply of 
pressurized air maintained constant confining pressure 
during the entire course of deformation. 

(5) Two Plexiglas walls of thickness 2cm; placed 
2.5 cm apart,  constrained the deformation to two dimen- 
sions and allowed observations and photographs. 

The entire apparatus was immersed in a water bath, 
just as in the cylinder runs, to maintain constant tem- 
perature. Silicone grease lubricated all surfaces. 
Sequential photographs of the deforming block gave suf- 
ficient resolution to measure amplitudes of folds and 
boudins to about ,+_ 0,025 mm which is less than 1% of 
layer thickness. 

RESULTS 

Cylinder compression tests 

Stress-strain curves at several strain rates are shown 
for both waxes in Fig. 2. The uniaxial stress (a) is com- 
puted by dividing the measured force by the instan- 
taneous value of the cross-sectional area of the cylinder. 
(The actual deviatoric stress is 2/3 o in this geometry),  
The universal strain rate (~') is computed by dividing the 
ram speed by the instantaneous cylinder height. During 
a single test the strain rate was changed twice or three 
times to obtain the maximum amount of information 
(i.e. the so-called interrupted test). Notice that each 
cylinder underwent a different time history of deforma- 
tion because different strain-rates were applied in dif- 
ferent orders. Yet the stress at any given strain and 
strain-rate seems quite reproducible. 

Paraffin-wax cylinders deformed fairly homogeneous- 
ly even after natural strains as high as 0.4. In contrast, 
microcrystalline wax cylinders often developed fractures 
and/or faults after about 0.2 natural strain. Small frac- 
tures formed in a roughly radial pattern. Faults usually 
occurred on planes at about 45 degrees to the applied 
stress. In most cases, faults or shear zones eventually 
gave an hourglass shape to the deformed microcrystal- 
line wax cylinders 
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Fig. 1. A cutaway view of the squeeze box for model deformations. Plexiglas front and back walls and their supporting frame 
are not shown. Rams are machined from aluminum. Telescoping L-shaped sidewalls are made from sheet steel. Thin strips 
of rubber were glued to the top and bottom pairs of sidewalls. As the sidewalls moved apart the rubber strip would stretch 

and help produce a homogeneous deformation in the block. 
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Fig. 2. Stress-strain curves for interrupted uniaxial compression tests on wax cylinders (1 bar = 105 Pascals). Roman 
numerals indicate nominal strain stress rates at different test stages. Notice that paraffin wax is generally much weaker than 

microcrystalline wax at 40°C but is more sensitive to the strain rate. The dotted portion of run 80 indicates lost data. 
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The large fractures and faults which are evident in 
some of the cylinders, do not seem to appear  in the later 
layered experiments.  The layered experiments  were al- 
ways per formed under confining pressure and were con- 
strained on all sides, as opposed to the cylinders which 
were usually unconfined. Consequently,  the validity of 
applying rheological parameters  derived f rom cylinder 
tests to the behaviour of models  in a totally different 
apparatus can be questioned. Obviously the best remedy 
would be to run s t ress-s t rain tests on solid wax blocks in 
the 'squeeze box'  apparatus.  Unfortunately,  friction 
forces in the apparatus increased the apparent  stress in 
the deforming waxes so useful data were unobtainable.  

However ,  two justifications do exist for using cylinder 
tests to interpret  layered model experiments.  First, frac- 
tures and faults were observed only during the latter half 
of cylinder deformations.  Since viscosities were com- 
puted from the stress at a strain of 0.1, our  conclusions 
about material  propert ies  should hold for the important  
early stages of the experiments.  Second, we were able to 
do a few special cylinder tests under  confining pressure 
in which the cylinder was constrained to deform cylin- 
drically: conditions which simulate those found in the 
squeeze box. In these special runs, the incidence of frac- 
turing and faulting was reduced. At the same time, for 
given strain rates the early stress levels were not changed 
significantly from those in regular cylinder tests. Al- 
though the experiments  and data from these special tests 
are crude, they do provide evidence that confining 
pressures of the order of 1 bar (1 bar = 105 pascals) and 
certain boundary shape constraints do not greatly alter 
the waxes'  measured viscosities. 

Figure 2 shows that at 40°C paraffin wax deforms in 
nearly steady-state creep while microcrystalline wax is 
strongly strain softened. As mentioned above,  large- 
scale inhomogeneit ies may contribute to the strain- 
softening (weakening) of the microcrystalline wax, but 
the special runs show that even when inhomogeneit ies 
are eliminated by confining pressure and boundary con- 
straints, microcrystalline wax will still exhibit some 
strain-softening. Perhaps about half as much as appears  
in these plots. 

The other important  behaviour shown by these curves 
is the variation of stress with strain-rate. Stress levels do 
not change greatly even with large changes in strain-rate 
for microcrystalline wax, an indication that this wax is 
non-Newtonian.  Paraffin wax is non-Newtonian to a 
lesser degree. To quantify this behaviour,  the data were 
plotted as log o against log ~ where cr is stress and g is 
strain-rate parallel to compression (see Fig. 3). The 
straight lines on this plot indicate that the waxes obey a 
power law relationship, g = C a  Nwith n equal to the in- 
verse of the slope on the plot and C a constant. For 
microcrystalline wax the exponent  n is 5.0, for paraffin 
wax 1.8, 

The viscosity of a deforming material is a measure of 
its resistance to deformation strain-rate. In the cylinder 
geometry,  the viscosity is computed  from the formula 
= ~(o/g) (Units: pascals s = kgm -1 s -°  = 10Poise). Inour  
non-Newtonian materials the viscosity decreases with 
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Fig. 3. Master plot showing relationship between strain-rate (s -1) and 
stress (bars) in wax cylinders at three temperatures. Solid lines and 
symbols are of microcrystalline wax. Dashed lines with open symbols 
are for paraffin wax. Since the stress levels varied with strain, stress 
values shown here were arbitrarily picked off at a strain of 0.1. Lines 
have an inverse slope equal to the power law exponent. The viscosity 
contrast, m, between microcrystalline wax and paraffin wax is shown 

for the conditions which layered models were deformed. 

increasing strain-rate. At 40°C the viscosity of paraffin 
wax ranged f rom 4 × 106Pas - t  at low strain-rates to 
1 x 106 at high strain rates. Microcrystalline wax went 
f r o m 2 × 1 0 8  t o 8 x  1 0 6 P a s - I  

Figure 3 also illustrates the rapid decrease of viscosity 
with increasing tempera ture  for paraffin wax. The 
viscosity of  microcrystalline wax showed a less dramatic 
tempera ture  dependence.  By choosing appropriate  tem- 
peratures and strain-rates, we could get a wide range of 
viscosity contrasts between layer and matrix. At low 
temperatures  or high strain-rate it was even possible to 
switch over  so that paraffin wax was stiffer than 
microcrystalline wax. Table 1 shows the sets of con- 
ditions at which we chose to run model deformation 
experiments.  Paraffin wax was chosen as the matrix 
because it was generally softer than microcrystalline wax 
and because it resisted faulting initiated at the boun- 
daries of the squeeze box. 

Experimental folding and boudinage 

Four cases were covered by the model experiments: 
folding with viscosity contrasts of 7.3 and 28 and 
boudinage with viscosity contrasts of 7.3 and 28. Two 

Table 1. Deformation conditions and rheological parameters in 
model experiments 

Paraffin Microcrystal- 
Temperature Strain rate Viscosity power law line power 

(°C) (×10 ~ s-J~ ratio exponent law exponent 

40 0.29 7 3 t.8 5,0 
40 I, 1 28 1.8 5.0 
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Fig. 4. Photographs show progressive stages of deformation in the squeeze box. Over all strain (In L/Lo) is given by numbers 
to left of pictures. (a) Folding at viscosity contrast of 28, block No. 38, white spots are ref lect ions.  
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Fig. 4(b) Boudinage at viscosity contrast of 7.3. block No. 40 
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Fig. 5. Final photographs of model blocks after a total natural strain of 0.5, showing layer structures and passive grid lines 
in the four experimental cases. (a) Folding at viscosity contrast, m, of 28, block No. 38, (b) boudinage at m = 28, block 
No. 45, (c) folding at m = 7.3, block No. 41, (d) boudinage at m = 7.3, block No. 46. Note that the folded layers (a) and 
(c) show a light edge. This is a thin rim of translucent wax which flared out against the Plcxiglas walls. The actual layer is 

about 20% thinner than these final pictures of the block surface seem to show. 
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runs were made for each case to check reproducibility. 
Regular trains of folds or boudins grew in all experi- 
ments. Figure 4 shows progressive stages of deformation 
during folding and boudinage experiments. Also 
illustrated by the photographs is the capability of the 
apparatus for giving a fairly homogeneous overall 
deformation, even at the largest strains. Strains 
measured at the grid lines about one wavelength from 
the layer were within 5% of strains indicated by the 
boundary displacements. The layer remained well bon- 
ded to the matrix throughout the deformations, with 
little apparent slip or separation. 

Fold and boudin shapes were not studied systematic- 
ally. It was noted, however, that the folds started as 
similar folds and spot measurements showed a thicken- 
ing in the hinges and thinning in the limbs after large 
deformations. 

Large-amplitude boudins, especially those grown with 
a viscosity contrast of 28, also deviated from the 
sinusoidal shape assumed in Smith's (1975, 1977) theory. 
The pinches accentuated into cusps, which eventually 
produced fairly sharp separations between the boudins. 
Then the lozenge-shaped boudins pulled away from each 
other and ceased flattening (see Fig. 5b). Another devia- 
tion from sinusoidal shape probably occurred because 
the layer thickness was progressively reduced, thereby 
shortening the dominant wavelength. Consequently, 
some of the stretched swells developed secondary 
boudinage pinches in their middles. In similar fashion, 
the thin drawn-out sections of the pinches developed 
secondary very short wavelength boudinage. Examples 
of secondary boudinage are rarely visible in Fig. 5d in 
both pinch and swell areas of the centre primary boudin. 

The most useful parameters derived from the 
deformation experiments were growth rates. The 
normalized growth rate, y, is defined here based on 

Smith (1977) as dA/A = ydL/L where A is the distur- 
bance amplitude and L is the length of a passive marker 
line far from and parallel to the layer. After integration: 
lnA/Ao=ylnL/Lo.  Therefore, to determine y we 
plotted in lnA/Ao (normalized amplitude) against in L~ 
L0 (natural strain parallel to layer) in Fig. 6. The slope 
of this curve at any point equals the growth rate. To keep 
within a linear regime of small amplitude homogeneous 
deformation, the growth rate was determined from the 
first few points at strains less than 0.2. Fitting was by 
least mean squares. Growth rates are tabulated in Table 
2 along with the conditions under which models were 
deformed. The lack of complete reproducibility is prob- 
ably due to inconsistencies in wax molding or layer em- 
placement. 

One should note from Fig. 6 that growth does not con- 
tinue increasing at the initial rate but levels off, presum- 
ably because after a certain amplitude is reached, the 
growth mechanism changes. The absolute amplitude 
achieved at the onset of nonlinear growth, ranges be- 
tween 20 and 30 degrees limb dip for folding and 7 and 
20 degrees dip for boudinage. 

DISCUSSION 

Reasons for studying growth rates 

Contrary to most previous work, this study has 
focused on growth rates rather than wavelengths. There 
are several reasons for this choice. 

First, one can bypass the requirement of knowing the 
relationship between initial layer irregularities and final 
wavelength. Fletcher & Sherwin (1978) point out that in 
the special case where the initial surface contains a 
'white roughness' spectrum of wavelengths of equal 
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Table 2. Growth rates of experimental folding and boudinage 

Theoretical growth rates 

Initial Wavelength to Viscosity Observed Newtonian Non-Newtonian Non-Newtonian and 
Model amplitude thickness ratio* contrast* growth rate* n~ = 1, n 2 = 1 n~ = 1 .8 ,  n 2 = 5.0 strain-softening:I: 

No. (a ( ) /H)  ( A / H )  (m) (y) (y) (y) (y) 

Folding: 
38 0.092 8 28 18.0 _+ 0.7 9.4 !9 7 21(neff = 7) 

(3 points) 
40 0.1)92 8 28 18.0 _ 0.4 9.4 }9.7 21(n,.ff = 7) 

(7 points) 
41 0.087 8 7.3 4.8 -+ 0.7 3.8 6.5 7(neft = 100) 

(7 points) 
42 0,076 8 7.3 7.1 +_ 0.3 3.8 (~.5 7(ne~ = 100) 

Boudinage: (8 points) 
43 0.031 6 28 8.6 ± 2.3 -0 .1  ~, 3 9(neft = 15 } 

(6 points) 
45 Data missing 6 28 8 .5+0 .7  -0 .1  3.3 9(ne~ = 15) 

(6 points) 
44 0.044 6 7.3 6.7 _+ 0.6 - 0 . 3  }.6 4(neff = 28) 

(7 points) 
46 0.063 6 7.3 7.3 _+ 0.1 - 0 . 3  1.6 4 their = 28} 

(6 points) 

* Nominal values determined at a strain of 0.1. 
t These slopes are calculated from the initial linear portion of the curves in Fig. 3 and are given with the standard error of slope. The number 
of points from which the slope was determined is given in parentheses. The overall uncertainty in the growth rates is much larger than the 
indicated values, as is evident from the lack of reproducibility, for example between model numbers 41 and 42. 
:~ Approximate values due to uncertainty in estimating degree of strain-softening in waxes. 

limb dips, the periodic wave train which eventually 
develops will in fact have an average wavelength equal 
to the theoretical dominant wavelength. In laboratory 
experiments, however, 'white roughness' is difficult to 
impress into a layer. Also, to get a statistically valid 
wavelength, large numbers of waves must be grown. 
Williams et al. (1978) have concluded from experimental 
and computer simulation studies that the relationship 
between initial and final shape of layers is complex. 

In contrast, the normalized growth rate of disturbance 
is theoretically independent of the initial amplitude as 
long as the amplitude is small. Shimamoto & Hara's 
(1976, fig. 3c) results with computer finite-element fold- 
ing, support this hypothesis. Initial limb dips were set at 
1, 4 or 10 degrees yet folds grew at equal rates. In our 
experiments, consistent results were most easily ob- 
tained by measuring growth rates of regular structures 
which had been induced by an initial periodic layer wavi- 
ness. 

Another reason for concentrating on growth rates is 
because they exhibit a much greater variation with 
changing material rheology than do dominant wave- 
lengths. Growth rates are. therefore, more characteris- 
tic of a particular rheological combination. Over the 
range of conditions with which we worked, the theory 
predicts that dominant wavelengths should vary only by 
+ 20% while the growth rates should vary by + 250% for 
folding and by + 300% for boudinage. These relation- 
ships are shown by Smith (1977, figs. 6, 7 and 8). 

All the above reasons for working with growth rates 
come from the fact that the amplitude of a growing dis- 
turbance is simply a more direct measure of the growth 
mechanism than is wavelength. When one measures an 
observed final wavelength, one is choosing an integrated 
parameter incorporating the growth rates of many 
wavelengths. A more precise and easily defined measure 

is the growth rate of a single wavelength. 
The disadvantage of focusing on growth rates arises 

during attempts to relate them directly to structures ob- 
served in rocks. Often little or no time history, exists in 
an outcrop from which to determine growth rates. 
Wavelengths, on the other hand, can be easily measured 
in the field. 

Theoretical versus observed growth rates 

The growth rates observed in our experiments can be 
compared with those predicted by theory. As shown in 
Table 2, the experimental growth rates for folding were 
close to those expected from Smith's (1977) non- 
Newtonian theory. Boudinage, however, grew much 
faster than would be predicted. 

Why should fold growth rates be so close to those 
predicted and boudinage growth rates so far off? Before 
trying to answer this question we will re-examine the 
experimental conditions and see how closely they fit the 
assumptions on which the theory is based. 
I. Material properties. 

(a) Are the waxes homogeneous and isotropic? Slight 
inhomogeneities existed due to the moulding process, 
such as small air bubbles, but otherwise the waxes' ap- 
pearance and behaviour led us to believe they are 
homogeneous and isotropic. 

(b) Did waxes exhibit steady-state creep? No, after a 
few per cent strain, the microcrystalline wax was strong- 
ly strain-softened. During later stages of deformation, 
shears and fractures became visible. Paraffin wax strain- 
softened at low temperatures but at 40°C exhibited 
approximately steady-state creep. 
II. Deformation conditions 

(a) Did cylinders and models deform in homogeneous 
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pure shear? Yes, the passive grid shows good 
homogeneity throughout the deforming blocks. Only 
near the boundaries did distortion become extreme, due 
to friction. So that this distortion would not influence 
our results, we made all layer measurements at points 
more than one wavelength away from boundaries. 

(b) Were folding layers parallel to compressive strain 
and boudinage layers perpendicular to compressive 
strain? Yes, within a few degrees. 

(c). Could material parameters determined in uniaxial 
cylinder tests be applied to 2-D model block experi- 
ments? This problem is discussed above in the results 
section under Cylinder compression tests. For the 
following reasons we conclude that rheologies deter- 
mined in cylinder tests should apply to our model experi- 
ments. (1) We were only interested in the quantitative 
aspects of early growth stages. During these stages cylin- 
ders and blocks appeared to behave similarly, that is, no 
fractures or faults were visible in either. (2) Confining 
pressure and shape constraints were applied in a few 
cylinder tests to simulate squeeze box conditions and 
they did not greatly alter stress-strain curves. (3) Dif- 
ferent cylinder geometries were used including tall, thin 
and short, flat shapes. Again, stress-strain curves were 
not appreciably affected. 

(d) Is small amplitude theory applicable to our experi- 
mental folding and boudinage? The theory is based on 
infinitesmal deformations but is assumed to hold for 
small amplitudes. Chapple (1968) has suggested 5 
degree limb dip as the limit of applicability while we 
obtained linear growth rates up to limb dips of 7 to 30 
degrees depending on conditions. 

(e) Were the layers long enough to be considered of  
infinite length? Yes, boudinage layers will stretch with 
the surrounding matrix only if the ratio of layer length to 
layer height is large in comparison to the viscosity 
contrast (m) between layer and matrix. For m = 28, we 
had a length/height ratio of 50. From observations, the 
boudinage layers did strain with the matrix (as seen in 
Figs. 5b & d) with only a slight lag at each end. The 
folding layers, being in direct contact with the moving 
rams, always strained with the matrix. 

Of the above conditions, we feel the most likely cause 
for the discrepancy between observed and theoretical 
growth rates was I(b), lack of steady-state creep. Finite 
amplitude effects, II(d), could also play a role, but are 
difficult to quantify. The following analysis extends ear- 
lier theory beyond the assumption of steady-state creep, 
to include strain-softening materials such as the 
microcrystalline wax. 

the substance was formed from a melt or most recently 
annealed. The weakening of a material with increasing 
strain (i.e. strain-softening) could arise, for example, by 
an increase in the density of dislocations, voids, or 
microcracks as the deformation proceeds (e.g. White et 
al. 1980). 

One important consequence of the strain-softening of 
the more competent layer is that the viscosity ratio (m) 
will be decreasing during the experiment. This would 
tend to progressively decrease the growth rates. A less 
obvious but equally important effect is that, because of 
the perturbation strain field associated with (say) fold- 
ing, different regions in the folding layer will soften at 
different rates. This effect may add directly to the strain- 
rate softening effect as it is the higher/lower strain-rate 
regions which will also have a higher/lower strain. To 
investigate this effect we need to construct a careful 
model of fold and boudinage growth in a strain and 
strain-rate softening material. 

In order to represent these properties mathematically 
we shall attempt to use the Reiner-Rivlin equation (e.g. 
Smith 1979) in two dimensions, extended to include the 
scalar strain 0as a state variable. 

oij = - P&i +/,(O, 0)gij. i, j = 1, 2. (1) 

The viscosity function gthus depends on both the scalar 
strain 8 and the scalar rate-of-strain 0. 

O= e211 + 2e~2 + e22 = trace eikekj 
(2) 

0=  gEt + 2~ ~2 + e22 = trace ~ikEkj 
where 

d 
~.j = ~- e~j. (3) 

This constitutive relation describes a material with a 
memory of its initial state but without elasticity. The 
deviatoric stress oii +p6ij is zero when ~:ij = 0. Using 
the scalar 0as a state variable allows us to represent only 
'isotropic' strain softening caused by isotropic changes in 
the microscopic structure of the material. 

In order to investigate the nature of small disturbances 
on a basic state, we derive a constitutive law that relates 
perturbation stress, strain and strain rate at each point. 
To begin, we represent the stress, strain, and strain rate 
as the sum of a basic value (S, E,/~) and a perturbation 
(primed variables): 

trij = Sij + tr~j 

£1j = Eij q" e~j 

4j =/~ij  + c;"r 

(4) 

The theory of  layer instabilities in strain-softening 
materials 

The existing theories of layer instability in non- 
Newtonian materials take into account only the vari- 
ation of the viscosity function/~ with the rate-of-strain. 
Yet, in many materials, the resistance to deformation 
also depends on the total strain which has occurred since 

Putting these into (1), iinearizing and subtracting off the 
basic state terms gives 

O'~j = -- p't~ij q- /.t(0-, 0)gi'j "4- /,t00'/~ij q- g00'/~ij, (5) 

where po and po are_derivatives evaluated at the basic 
state conditions O, 0, which are in turn, functions of 
time. For the case considered here £1~ = - £22, £12 -- 
0, so that the third and fourth terms on the right side of 
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(5) do not influence the tangential stresses. From (2), 

O' = 2 E t ~ e ~  + 2E22£22 (6} 

O' = 2E~t~)t + 2 E z 2 9 2 2 -  

Equation (5) now becomes 

i ' ) 
_ _  £ 1  I #0 

a'l] = - p + t ~  1 + I ~ ° I ~ 1 1 4 E I I T - - + - - E l ~ 4 E l l  gl~ 
# Ell I~ , 

0J12 = /.18112 {7l  

a~2 = - p + ~  1 + ~ ° E l 1 4 E l l ~ - - + - - E l ~ 4 E l l  2. 
# e22 ~ , 

For most t ime-dependent flows there would be no 
simple relationship between Eij and gij other than (3). 
For small amplitude layer instabilities however 

Ei j  = Ei j t .  {8} 

If the perturbation structure is growing exponentially 
then 

gli = f (x, y )  e ~ 19) 

and 

' = f e  ~ -  f .  (10} 

If the initial amplitude of the perturbation structure is 
very small, then we are interested in the disturbance 
after considerable growth has occurred ( a t  > 1). In this 
ease 

, ~ f e  ~ eij = 
~t 0{ 

To obtain a tractable problem we select a viscosity func- 
tion of the form 

#{0, 0) = fi(0}e - ' ° 'P  : {12) 

where 0* is a measure of the strain-softening in the 
material. This single parameter  separable function is 
somewhat restrictive, but it allows us to derive a time 
independent formula for an 'effective' power law ex- 
ponent  which incorporates the primary effects of strain- 
softening. 

The stress-strain curves from the uniaxial cylinder 
tests can be used to determine O* in the following way. 
If the uniaxial strain e, is taken in the direction '1', then 

g; = t; l l  = - -2 ,g22 = -2Z~3 {13} 

so that 

3 E2 ' 0=~ 

From {1) and (12), the deviatoric stress will drop to (I/e) 
of its initial value when 0 = 0* or, using (14), when e = 
e* given by 

: =  " , . *  2 cJ* , {15} 
"3 

The value ~*, which characterizes the degree of strain- 
softening, can be read from the stress-strain curves. If 
the stress drop is rapid. ~* will be small and strain- 
softening is important. 

For use in (7), we now differentiate (12) 

[d  0 ] -- 
It 'i; 2t{)20"1 i : (161 

From (15) and (16), with 0 " ~ --'= ,~E']I  w e  have 

i lo2  I = ..... - .... . {17) 
/.l i~ -V 3 e.*Ell 

Using (17) the coefficient of e ~  in (7) becomes 

2 ) 
/t{0. ¢}1{ I + 2r , (18) 

x 3 7c* 

where 'y' is the normalized growth rate 

; {19} 

and 'r' ~s a measure of strain rate softening 

(J]u~l {20} 

For a power-law dependence of strain-rate upon stress, 
the quantity 'r' can be shown to be equal to [ 1/2(1/n - 1)], 
where 'n' is the stress-exponent. Finally then using this, 

(111 and (18) 

r/ --- jli0' (J} ;7 \."3 7t:* " {21 } 

For instabilities with rapid growth rates, or in materials 
with little strain-softening {i.e. large e*) (21) reduces to 

?] = ~1/11 

as in Smith (1977, 1979). More generally, we can charac- 
terize the combined effect of strain and strain-rate 
softening by defining an effective power law exponent 

:~:. . . . . . .  :-- . ( 2 2 )  

G .  n \ 3 7~:* 

This exponent  can be used directly in the formulae for 
the dynamic growth rate of folds and boudins derived by 
Smith (1977, 1979) written schematically as 

yd = 34](Y/H. m .  h i ,  n2).  (23) 

{14} The two formulae, (22) and (23), must be solved simil- 
taneously to determine 7 and tleff. 

Using (22) we can estimate the role of strain-softening 
in the present experiments. For the paraffin, the cylin- 
der tests indicate n = 1.8 and t;* = 10 or greater or even 
negative (i.e. little if any strain-softening, possibly 
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strain-hardening). Even for the slowest growth observed 
in the experiments, y = 6, equation (22) gives neff ~- n. 
For the microcrystalline wax (i.e. the layer material), 
the cylinder tests indicate n = 5, with e* being somewhat 
greater than 0.3 depending on the confining pressure 
and the way the curve fitting is done. We will use a value 
of e* = 1 in the following estimates. 
Then for folding: 

m = 28, observed ), ~ 18 

1 1 1.15 1 

nef f 5 18(1) ~ 7 (24) 

m = 7.3, observed y ~ 6 

1 1 1.15 1 

n, n - 5 6(1) ~ i00 (25) 

and for boudinage: 

m -- 28, observed ~, ~ 8.5 

1 1 1.15 1 

nat 5 8.5(1) ~ 15 (26) 

m = 7.3, observed ~, ,~ 7 

1 1 1.15 1 

n®ff 5 7(I) ~ ~" (27) 

The high contrast folding (24) is not significantly in- 
fluenced by strain-softening because of its large growth 
rate. High contrast boudinage (26) is more strongly 
affected. Low contrast folding and boudinage (25) and 
(27) are, if we can believe the choice e* = I, very strongly 
influenced by strain-softening because of their small 
growth rates. 

In these latter cases, very large values of neff will be 
generated by the cooperation of strain and strain-rate 
softening. Because of the large value of neff the calcula- 
tion of the growth rates can be simplified using the 
technique of Smith (1977, 1979) with n2 = ~. The length 
of this calculation can be further reduced if we follow the 
Appendix in Smith (1979) with nl = I. The algebra still 
takes several pages but the result, for boudinage, is 

- (m - 1) (2m tan  fl) 
~d = m + 13 - tan ~ + (m + #) tanz#  (28)  

and for folding 

( m -  l)(2m tan/~) 
)'a = m +/3  + tan fl + (m + 1~)tan2# ' (29) 

where fl =- ~tHlZ and y = yd + 1. An equivalent deriva- 
tion has been done by Fletcher (1981). 

These functions have a broad maximum at about )dH 
= 4, and for m i> 2, this maximum growth rate is 
approximately (from 28, 29) 

~'d ~ m -- 1.3 for boudinage (30) 

Yd ~ m - 2.5 for folding. 

The values given by (30) would have to be increased by 

about 20% to take into account the fact that n~ = 1.8 
rather than nl = 1. 

Note that for very large neff it is no longer appropriate 
to think of folding as the faster-growing instability. 
Choosing m = 7.3 gives ya = 7, y ~ Yd -- 1 ---- 6, )' = yd 
+ 1 ~ 7, is not much different. This agrees with the 
observed values (y ~ 7 for boudinage, y = 6 for folding) 
within the accuracy and repeatability of the experi- 
ments. A more direct comparison, using the exact 
growth rate equations, is presented in Table 2. 

The above reasoning is particularly helpful in explain- 
ing how boudinage can form in materials with modest 
viscosity ratios and power law exponents. Without 
strain-softening, the values n 2--- 5, n 1 = 1.8, m =7 .3  
give a growth rate of y =  1.6. It is doubtful that bou- 
dinage could be generated at all with a growth rate this 
low. 

The reader has probably already noticed that by 
choosing a smaller value of e* in (22), or a larger value 
of n, it is possible to make neff negative. The physical 
meaning of this situation is clarified by the energy 
analysis of Smith (1981). With neff negative it is possible 
for a disturbance to draw energy directly from the basic 
state strain-energy stored in the material. In a large 
block of such material, this situation would lead to 
catastrophic failure, if the boundary conditions would 
allow it. If, however, a thin layer has a negative value for 
neff, its surroundings with positive neff will act to keep the 
growth rate of moderate wavelength disturbances boun- 
ded. In this case the growth rates of a disturbance could 
be even larger than in the n 2 ~ 0o limit, as given by (28) 
and (29), as there is now an additional source of energy. 
The disturbance can draw energy both from the jump in 
the layer-parallel normal stress across the tilted inter- 
faces (Smith 1975, 1977) and, from the interior of the 
strain and strain-rate softening layer. 

This latter source is one that allows far reaching con- 
jugate shear zones to form in straining homogeneous 
materials (Smith 1981). Such shear zones were seen to 
develop around small interior or boundary imperfec- 
tions in large blocks of the microcrystalline wax during 
two-dimensional deformation experiments and in the 
cylinder compression tests described earlier. The theory 
allows us to see the three observations: strain and strain- 
rate softening of cylinders, conjugate shear zone forma- 
tion in large blocks and rapid growth of boudinage in 
thin layers, as closely related phenomena. 

The reader is certainly aware of the speculative nature 
of this discussion in relation to the wax experiments. The 
uncertainty in the empirically derived material proper- 
ties and growth rates, together with assumptions (11) 
and (12) in the analysis, cloud the results. More careful 
experiments, together with numerical modelling, may 
be necessary to determine more quantitively the in- 
fluence of strain-softening on layer instabilities. 

Comparison of experimental results to previous fold 
modelling studies 

To compare previous studies to the present experi- 
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Table 3. Growth rates of experimental and finite-element folding 

n n Observed Theoreticat 
Type Model Matrix Layer Ao/Ho m growth rate growth rate 

Wax Cobbold 1 2.6 2.6 ?* 10 ~.5 7.6* 
experiments Cobbotd 2 2.6 2.6 ? * 10 ~. 3 

Cobbold 3 2.6 2.6 '~* 10 7 1 

Finite-element Shimamoto 1 1 74  10 Ltt 4.8 
and Hara 1 1 I i 30 ~.5 11.0 

1 l 16 10(I '(i 25.5 

Finite-element Parrish 5 8 ') 12 ..; .~ 17.1 

Finite-element Parrish et al. 8.3 2.6 ~ 10 5I ', 1 ~ 12.0 

*The initial disturbance for the three models were of different shape and amplitude, but none was periodic or 
sinusoidal so no wavelength is given here. The theoretical growth rate is that for a sinusoidal waveform of 
" 'dominant" wavelength/thickness ratio. See text for further explanation. 

tRough estimate due to incomplete published data set. 

mental results we computed growth rates from diagrams 
or graphs available in four published papers. Table 3 lists 
the parameters for the models and both the observed 
and theoretical growth rates. The laboratory experi- 
ments of Cobbold (1975) used materials whose rheology 
was carefully determined. Cobbold's initial layer 
shapes, which were neither sinusoidal nor periodic, had 
no well-defined wavelength. Nevertheless, his layers 
tended to develop a periodic sinusoidal shape and a 
dominant wavelength during growth. This should allow 
comparison of Cobbold's growth rates with the present 
results. The other three studies were with finite-element 
computer models. Shimamoto & Hara (1976) assumed 
Newtonian rheologies while Parrish (1973) and Parrish 
et al. (1976) had models incorporating power law rhe- 
ologies. 

Looking at these four studies and including ours as a 
fifth, it seems that the observed growth rates for the first 
two correspond adequately to the predicted values from 
theory. The two finite-element studies with power law 
materials gave growth rates much lower than would be 
predicted. Our experimental results in strain-softening 
materials, required an addition to the theory in order to 
account for the large boudinage growth rates. In con- 
clusion, it is difficult to see any consistent relationships 
between observed and theoretical growth rates for the 
five studies. Methodological differences between the 
studies as well as parameters which have not been taken 
into account (those besides nl ,  n2, m and )~o/Ho) prob- 
ably cause the inconsistent growth rate results. 

Exper imenta l  rock deformat ion work  

t 

Experimental deformation data from a wide variety of 
rocks and minerals have generally been fitted to a power 
law equation with exponents between 2 and 8 (Tuilis 
1979, Carter 1975). As for evidence of strain-softening 
in rocks, Griggs et al. (1960) give stress-strain curves at 
5 kb confining pressure and strains of about t5% for 
several rock types. Dunite, pyroxenite and Yule marble 
(see also Heard & Rayleigh 1972) showed either steady- 
state deformation or strain-hardening. But basalt, 
granite and dolomite all exhibited strain-softening over 
a wide range of experimental conditions. Quartzite has 

also shown some strata-softening in Heard & Carter's 
(1968) experiments. Paterson & Weiss (1966, 1968) 
deformed an anisotropic rock, phyllite, by 20% or more 
and obtained strain-softening when shortening was 
parallel or at a low angle to the foliation. Their experi- 
ments also produced folding and boudinage of quartz 
veins running through the phyllite. 

Experimental results from rock studies support the 
belief that our waxes' rheologies are appropriate for 
modelling small fracture formation in some rocks of the 
Earth's crust. It may be interesting to find out whether 
folds and boudins (especially the latter) are more often 
found in rock types exhibiting strain-softening rather 
than steady-state creep or strain-hardening. 
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A P P E N D I X  

The waxes used were obtained at an arts supply store. Since large 
variations can occur between batches, a sufficient amount of wax was 

purchased to complete all the experiments. Paraffin wax had a translu- 
cent white colour and was slippery to the touch while the microcrystal- 
line wax was dark brown and tacky. Test cylinders were made by 
pouring melted wax into open-topped cylindrical aluminum moulds. 
Upon cooling, the paraffin shrank by about 20% thereby producing a 
deep central depression. More melted paraffin was poured into this 
depression to eliminate the hollow. Then the top surfaces of the cylin- 
ders of both wax types were shaved flat with a knife. The Instron 
testing machine has a crossed-head which is driven at constant speeds 
downward toward a rigid platen equipped with a load cell. The load 
cell's output is amplified and fed to a chart recorder. This system 
provides an accurate record of force acting through the test specimen 
vs displacement. A Plexiglas tank set on the load cell platen served as 
a water bath. Rigid plastic blocks were used as insulating spacers 
between the wax cylinder and the steel cross-head. Cylinders were 
smeared with silicone stopcock grease on both ends to reduce friction. 
Thin, flexible acetate sheets were placed directly on the greased sur- 
faces. These sheets permitted easy removal of the cylinder from the 
apparatus after deformation was completed. Cylinders were allowed 
to equilibrate in the apparatus at a set temperature for several hours. 

Most cylinders had height-to-diameter ratios of 1. We also ran 
several with ratios of 2 and 0.25 to check for possible effects of shape 
on the stress-strain curves. So that the effect of confining pressure 
could be investigated, other special runs were conducted in an air 
pressure vessel. To allow any air pockets trapped in the wax a chance 
to drain, the cylinders were wrapped in air-tight plastic bags fitted with 
a tube leading out of the pressure vessel to atmospheric pressure. 
Confining pressures of 1 and 2 bars were used. 

To make layered blocks for the folding and boudinage experiments, 
paraffin was first moulded in the form of a large flat sheet which was 
shaved down to the proper thickness. Then it was cut by a steel wire 
into numerous half blocks. Two half blocks were given corresponding 
sinusoidai edges by using a sharp knife guided by a special guide plates 
clamped on either side of the block. Microcrystalline layers were 
prepared by first moulding a thin sheet (0.5-2.0 mm thick) by pouring 
melted wax onto the surface of hot water. Upon cooling, this was sliced 
to the proper rectangular shape, heated and softened and then placed 
between the cool hard paraffin half blocks. These half blocks were then 
firmly squeezed together to both impart the wavy block edges to the 
layer and to ensure good adhesion. A square grid pattern was then 
inked into fine score lines on the front of the block with a permanent 
ink marking pen. 

As in the cylinder tests, the wax blocks were greased and then thin 
transparent acetate sheets were pressed against the surfaces. The block 
was placed between rams of the squeeze box and then the Plexiglas 
view plates were clamped to the front and back by a frame tightened 
with four thumb screws. The entire squeeze box was then immersed in 
the water bath and allowed to equilibrate for several hours before the 
run was conducted. 


